48 research outputs found

    Effect of Naloxone-3-Glucuronide and N -Methylnaloxone on the Motility of the Isolated Rat Colon After Morphine

    Get PDF
    The effect of the opioid antagonists naloxone-3-glucuronide and N-methylnaloxone on rat colon motility after morphine stimulation was measured. The rat model consisted of the isolated, vascularly perfused colon. The antagonists (10−4 M, intraluminally) and morphine (10−4 M, intra-arterially) were administered from 20 to 30 and from 10 to 50 min, respectively. Colon motility was determined by the luminal outflow. The antagonist concentrations in the luminal and venous outflow were measured by high-performance liquid chromatography. Naloxone-3-glucuronide and N-methylnaloxone reversed the morphine-induced reduction of the luminal outflow to baseline within 10 and 20 min, respectively. These antagonists were then excreted in the luminal outflow and could not be found in the venous samples. Naloxone, produced by hydrolysis or demethylation, was not detectable. In conclusion, highly polar naloxone derivatives peripherally antagonize the motility-lowering effect of morphine in the perfused isolated rat colon, are stable, and are not able to cross the colon-mucosal blood barrie

    Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    Get PDF
    AbstractRecently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS)-induced cell death and stimulate proliferation due to the antioxidative property of these particles

    Impairing the production of ribosomal RNA activates mammalian target of rapamycin complex 1 signalling and downstream translation factors

    Get PDF
    Ribosome biogenesis is a key process for maintaining protein synthetic capacity in dividing or growing cells, and requires coordinated production of ribosomal proteins and ribosomal RNA (rRNA), including the processing of the latter. Signalling through mammalian target of rapamycin complex 1 (mTORC1) activates all these processes. Here, we show that, in human cells, impaired rRNA processing, caused by expressing an interfering mutant of BOP1 or by knocking down components of the PeBoW complex elicits activation of mTORC1 signalling. This leads to enhanced phosphorylation of its substrates S6K1 and 4E-BP1, and stimulation of proteins involved in translation initiation and elongation. In particular, we observe both inactivation and downregulation of the eukaryotic elongation factor 2 kinase, which normally inhibits translation elongation. The latter effect involves decreased expression of the eEF2K mRNA. The mRNAs for ribosomal proteins, whose translation is positively regulated by mTORC1 signalling, also remain associated with ribosomes. Therefore, our data demonstrate that disrupting rRNA production activates mTORC1 signalling to enhance the efficiency of the translational machinery, likely to help compensate for impaired ribosome production

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Improved impurity fingerprinting of heparin by high resolution (1)H NMR spectroscopy

    No full text
    For improving the identification of potential heparin impurities such as oversulfated chondroitin sulfate (OSCS) the standard 2D (1)H-(1)H NMR NOESY was applied. Taking advantage of spin diffusion and adjusting the experimental parameters accordingly additional contaminant-specific signals of the corresponding sugar ring protons can easily be detected. These are usually hidden by the more intense heparin signals. Compared to the current 1D (1)H procedure proposed for screening commercial unfractionated heparin samples and focusing on the contaminants acetyl signals more informative and unique fingerprints may be obtained. Correspondingly measured (1)H fingerprints of a few potential impurities are given and their identification in two contaminated commercial heparin samples is demonstrated. The proposed 2D NOESY method is not intended to replace the current 1D method for detecting and quantifying heparin impurities but may be regarded as a valuable supplement for an improved and more reliable identification of these contaminants

    Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective

    No full text
    The incidence of numerous types of cancer has been increasing over recent years, representing the second-most frequent cause of death after cardiovascular diseases. Even though, the number of effective anticancer drugs is increasing as well, a large number of patients suffer from severe side effects (e.g., cardiomyopathies) caused by these drugs. This adversely affects the patients’ well-being and quality of life. On the molecular level, tumor cells that survive treatment modalities can become chemotherapy-resistant. In addition, adverse impacts on normal (healthy, stromal) cells occur concomitantly. Strategies that minimize these negative impacts on normal cells and which at the same time target tumor cells efficiently are needed. Recent studies suggest that redox-based combinational nanotherapies may represent one option in this direction. Here, we discuss recent advances in the application of nanoparticles, alone or in combination with other drugs, as a promising anticancer tool. Such novel strategies could well minimize harmful side effects and improve patients’ health prognoses

    Fibroblast-to-myofibroblast switch is mediated by NAD(P)H oxidase generated reactive oxygen species

    Get PDF
    Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier

    Effect of naloxone-3-glucuronide and N-methylnaloxone on the motility of the isolated rat colon after morphine

    Get PDF
    The effect of the opioid antagonists naloxone-3-glucuronide and N-methylnaloxone on rat colon motility after morphine stimulation was measured. The rat model consisted of the isolated, vascularly perfused colon. The antagonists (10(-4) M, intraluminally) and morphine (10(-4) M, intra-arterially) were administered from 20 to 30 and from 10 to 50 min, respectively. Colon motility was determined by the luminal outflow. The antagonist concentrations in the luminal and venous outflow were measured by high-performance liquid chromatography. Naloxone-3-glucuronide and N-methylnaloxone reversed the morphine-induced reduction of the luminal outflow to baseline within 10 and 20 min, respectively. These antagonists were then excreted in the luminal outflow and could not be found in the venous samples. Naloxone, produced by hydrolysis or demethylation, was not detectable. In conclusion, highly polar naloxone derivatives peripherally antagonize the motility-lowering effect of morphine in the perfused isolated rat colon, are stable, and are not able to cross the colon-mucosal blood barrier

    The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro

    No full text
    A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the 'parent' compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects
    corecore